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SUMMARY

This paper reports the outcome of applying two di�erent low-Reynolds-number eddy-viscosity models to
resolve the complex three-dimensional motion that arises in turbulent �ows in ducts with 90◦ bends. For
the modelling of turbulence, the Launder and Sharma low-Re k–� model and a recently produced variant
of the cubic non-linear low-Re k–� model have been employed. In this paper, developing turbulent �ow
through two di�erent 90◦ bends is examined: a square bend, and a rectangular bend with an aspect
ratio of 6. The numerical results indicate that for the bend of square cross-section the curvature induces
a strong secondary �ow, while for the rectangular cross-section the secondary motion is con�ned to
the corner regions. For both curved ducts, the secondary motion persists downstream of the bend
and eventually slowly disappears. For the bend of square cross-section, comparisons indicate that both
turbulence models can produce reasonable predictions. For the bend of rectangular cross-section, for
which a wider range of data is available, while both turbulence models produce satisfactory predictions
of the mean �ow �eld, the non-linear k–� model returns superior predictions of the turbulence �eld and
also of the pressure and friction coe�cients. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Developing turbulent �ow through 90◦-curved ducts occurs in several engineering applications
such as the draft tube of hydraulic turbines and centrifugal pumps. Moreover, there are generic
similarities with �ows in turbine cascade passages. Consequently, detailed information about
�ow in 90◦-curved ducts (e.g. 90◦ bends) can be very valuable for the optimum design of
engineering devices. The assessment of how e�ective current CFD practices are in predicting
such �ows is, therefore, of strong practical relevance.
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In two-dimensional �ows through curved channels, the most critical problem is the mod-
elling of e�ects of streamline curvature on the turbulence �eld. The e�ects of the streamline
curvature on turbulence are caused by the centrifugal force. They are represented in the tur-
bulence kinetic energy, stress transport and scale equations by terms involving interaction
of di�erent stress and rate of strain components. Early attempts in predicting the behaviour
of such �ows showed that conventional e�ective viscosity models (EVM) have all failed
to reproduce these curvature e�ects. As shown by Iacovides and Li [1], to reproduce the
measured mean �ow development the use of second-moment closures becomes necessary. In
three-dimensional �ows through curved ducts of moderate curvature, the main �ow feature is
the curvature-induced secondary motion. This is driven by the imbalance between the radial
(cross-duct) pressure gradient and the centrifugal force. At the near-wall regions, due to the
low axial velocity the centrifugal force is weak and the radial pressure gradient force drives
the �uid towards the inner side of the curved duct. In the duct core, where the axial velocity
is high, the centrifugal force is the dominant one and drives the �uid towards the outer side
of the curved duct. This secondary motion causes a highly three-dimensional �ow �eld in
curved ducts, with the faster �uid accumulating along the outer side and the slower displaced
along the inner wall. The enhanced mixing also increases pressure losses and, in the case of
heated ducts, overall wall heat transfer. The curvature-induced secondary motion can thus be
reproduced even in computations using EVMs.
As the secondary motion is strongest within the near-wall regions, where the imbalance

between the centrifugal and radial pressure forces is greatest, one would expect that only
turbulence models that resolve the near-wall motion would be able to reproduce this �ow
feature correctly. This has been shown to be the case by the work of Choi et al. [2], who
instead of using the high-Re turbulence models with the wall-function approximation, adopted
a two-layer approach. This allows the mean �ow equations to be integrated up to the wall,
using simple models of near-wall turbulence. Choi et al. [2] also showed that replacement of
high-Re k–� in the duct core with an algebraic second-moment closure resulted in further im-
provements in the predicted �ow �eld. This suggests that the e�ects of turbulence anisotropy,
while less critical than in two-dimensional �ows through curved passages, are certainly not
negligible.
Turbulent �ow through 90◦-curved ducts has been extensively studied by many research

groups, using experimental techniques, in order to provide information about �ow behaviour.
Measurements on turbulent �ow in circular curved ducts were reported by Enayet et al. [3],
Anwer et al. [4] and Sudo et al. [5]. These experiments help researchers develop an under-
standing of the development of turbulent �ow in curved ducts. In the following, attention
is mainly focused on more related published works on turbulent �ow through 90◦-curved
ducts of either rectangular or square cross-section. Due to the large number of such stud-
ies available in the literature, only some of the published works in this area are summa-
rized. Humphrey and Whitelaw [6] reported measurements for turbulent �ow through a 90◦

bend of square cross-section and strong curvature and found that the pressure-driven sec-
ondary �ows were much stronger than the stress-driven secondary �ows. Taylor et al. [7],
using LDA, measured velocity components and wall-pressure of developing turbulent �ow
through a square 90◦ bend with a short upstream tangent. They found that the bound-
ary layer thickness at the start of the bend is important to the �ow development within
the bend. It was also noted that turbulent �ow in an identical duct of mild curvature
results in a weaker secondary motion. Kim and Patel [8], using a �ve-hole pressure probe
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and two-sensor hot-wire probes measured mean velocities and Reynolds stresses for devel-
oping turbulent �ow in a 90◦-curved duct of rectangular cross-section. Their data showed
that within the bend there is an extensive region of two-dimensional boundary layers un-
der strong stream-wise curvatures and attendant pressure gradients. Moreover, their results
showed the development of the pressure-driven secondary motion in the corner region which
eventually leads to the formation of a longitudinal vortex on the convex wall. Sudo et al.
[9], using the method of an inclined hot-wire obtained mean velocity and Reynolds stress
measurements for turbulent air�ow through a square-sectioned 90◦-curved duct. They pre-
sented the details of both main stream and secondary �ow in the cross-section and con-
cluded that the development of main stream is related to the secondary �ow induced in the
cross-section, pressure gradients near the inner and outer walls, and the centrifugal force.
Mokhtarzadeh-Dehghan and Yuan [10], using hot-wire anemometry have recently measured
the details of developing turbulent �ow in a 90◦ square duct and provided quantitative data for
the bursting period of turbulent boundary layers subjected to convex and concave curvatures of
the bend.
On the whole, it can be concluded that developing turbulent �ow in 90◦ bends is a very

complex �ow which is in�uenced by various parameters such as the duct aspect ratio, the
boundary layer thickness at the start of curvature and also the ratio between the radius of
curvature and the hydraulic radius of the duct. Due to these complexities, the experimental
data may be used in CFD code validation to examine not only the capabilities of numerical
schemes, but also to investigate the performance of the turbulence models. In the litera-
ture, there are a few papers that reported numerical results for turbulent �ow through 90◦

square ducts. One of the earliest numerical attempts to simulate turbulent �ow through 90◦

bends was reported by Kreskovsky et al. [11]. They employed a simple closure model for
the Reynolds stresses to predict the 90◦ bend �ow of Taylor et al. The level of agreement
achieved was reasonably good, though there was insu�cient growth of the boundary layer
on the convex inner surface toward the end of the bend where the �ow on that surface en-
countered a substantial adverse pressure gradient. In a later study, Iacovides et al. [12], using
a two-layer EVM, performed numerical computations for Taylor’s experiment. The standard
k–� eddy-viscosity was employed for the main �ow region, while the mixing-length hypoth-
esis was used across the low-Re near-wall region. The computational results showed that
the curvature induces a pair of counter-rotating vortices within the duct cross-section. The
level of agreement was better than obtained by Kreskovsky et al. using a simple mean-�eld
closure.
In this paper, a numerical investigation has been undertaken to study developing turbulent

�ow through two di�erent 90◦-curved ducts: a square duct and a rectangular duct. In contrast
to the mixing-length and zonal models used in earlier investigations, here the low-Re models
of turbulence are employed. The main objectives of the present contribution are to examine
how curvature alters �ow development in the curved ducts and to explore the predictive
capabilities of a recently modi�ed variant of the cubic non-linear k–� model, relative to
those of the linear low-Re k–� model, in predicting �ow characteristics in curved ducts. The
version of the cubic non-linear k–� model has been recently applied for the computations of
convective heat transfer in impinging and separating �ows by Craft et al. [13] and in ribbed
cooling passages by Raisee et al. [14] with encouraging success. The present study attempts to
further examine the capabilities of the non-linear k–� model in predicting �ow characteristics
in curved passages.
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2. GEOMETRY INVESTIGATED

Figure 1(a) shows the geometry of the �rst test case investigated in the present study. The
bend is of square cross-section and has a bend radius to duct height ratio (Rc=H) of 2.3.
The lengths of the duct before and after the curved section are 9H and 26H , respectively.
The upstream length of the computational domain is set to 9H , because when starting with
uniform inlet conditions, the resulting predictions best matched the available data at the �rst
measured location just before the bend. The downstream length is selected as 26H , based
on the empirical correlation for entrance-length given by Munson et al. [15]. The available
experimental data for this geometry are stream-wise and cross-stream velocity components
and the pressure coe�cient distribution. The experimental data were collected by Taylor
et al. [7] at a Reynolds number, based on the hydraulic diameter (Dh =H) and the bulk
velocity (Ub), of 40 000 using LDA. Measured stream-wise and cross-stream velocities at
selected locations as well as the pressure coe�cient distributions along the curved section of

Figure 1. The geometry of 90◦ bends examined: (a) square 90◦-curved
duct; and (b) rectangular 90◦-curved duct.
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the duct, are used for comparisons. Figure 1(b) shows the geometry of the second test case
examined in this paper. The bend is of rectangular cross-section with an aspect ratio (W=H) of
6 and the lengths of the duct before and after the curved section are 8H and 35H , respectively.
The reason of selecting these lengths is similar to that mentioned above for the curved duct
of square cross-section. For this con�guration, �ow measurements have been made by Kim
and Patel [8] at a Reynolds number, based on the centreline velocity (Uc) and the duct’s
height (H), of 224 000. For this case, experimental data include velocity and Reynolds stress
pro�les, pressure coe�cient and friction factor distribution.

3. GOVERNING EQUATIONS

All the �ow equations are presented in Cartesian tensor notation.

3.1. Mean �ow equations

For a steady incompressible �ow, the conservation laws of mass and momentum are written as

Continuity:

@Uj
@xj

=0 (1)

Momentum:

@(UjUi)
@xj

= − 1
�
@P
@xi

+
@
@xj

(
�
@Ui
@xj

− uiuj
)

(2)

where P is the pressure, upper and lower case U ’s denote mean and �uctuating velocities,
and uiuj is the unknown Reynolds stress.

3.2. Turbulence modelling equations

The turbulence models employed for computation are the Launder and Sharma [16] low-Re
k–� model, and a recently developed version of non-linear low-Re k–� model [13]. Compu-
tations with both models have been carried out with inclusion of the new di�erential form of
length-scale correction term ‘NYP’ [17] which is free from any explicit wall distance, in the
dissipation rate equation.

3.2.1. Linear low-Re k–� model. In this turbulence model, the Reynolds stress tensor is
obtained from the eddy-viscosity approximation:

uiuj=
2
3
�ijk − �t

(
@Ui
@xj

+
@Uj
@xi

)
(3)

and the turbulent viscosity, �t , is obtained from:

�t = c�f�
k2

�̃
(4)
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Table I. Empirical constants for the k–� model.

c� c�1 c�2 �k ��

0.09 1.44 1.92 1.0 1.22

To obtain �t , transport equations for the turbulence kinetic energy, k, and homogeneous
dissipation rate, �̃, are solved. The transport equation for the turbulent kinetic energy is
written as

@
@xj
(Ujk)=

@
@xj

[(
�+

�t
�k

)
@k
@xj

]
+ Pk − �̃− 2�

(
@
√
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@xj

)2
(5)

The dissipation rate of the turbulent kinetic energy is obtained by solving the equation:
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where the variable �̃ is the homogeneous dissipation rate which can be related to the real
dissipation rate through:

�̃= �− 2�
(
@
√
k

@xj

)2
(7)

The damping functions f�, f1 and f2 are given by

f�= exp[−3:4=(1 + 0:02R̃t)2]; f1 = 1; f2 = 1− 0:3 exp(−R̃2t ) (8)

where R̃t = k2=��̃ is the local turbulent Reynolds number.
The model constants are given in Table I.
The term E was �rst introduced by Jones and Launder [18] and is expressed as

E=2��t

(
@2Ui
@xj@xk

)2
(9)

The extra source term, S�, stands for the ‘NYP’ correction term which was �rst proposed by
Iacovides and Raisee [17] and is written as

S�=NYP= max
[
C!F(F + 1)

�̃ 2

k
; 0
]

(10)

where

F = {[(@l=@xj)(@l=@xj)]1=2 − dle=dy}=Cl (11)

represents the di�erence between the predicted length-scale gradient, with l= k3=2=�̃, and the
‘equilibrium length-scale gradient’, dle=dy, de�ned by

dle=dy=Cl[1− exp(−B�Rt)] + B�ClRt exp(−B�Rt) (12)

where Cl = 2:55; B�=0:1069 and C!=0:83.
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3.2.2. Non-linear low-Re k–� model. It is well known that linear eddy-viscosity models such
as the k–� model exhibit numerous weaknesses, including an inability to capture normal
stress anisotropy and insensitivity to stream-line curvature. Second-moment closure models,
on the other hand, account for several of the key features of turbulence that are misrepre-
sented by linear eddy-viscosity models. However, these models are considerably more complex
and require higher CPU time than eddy-viscosity model. Gatski and Speziale [19] proposed
non-linear models which are basically explicit algebraic stress models derived from second
moment closures. Although such models ensure that they return the same results as the
underlying stress-transport scheme under equilibrium conditions, their performance in com-
plex, highly non-equilibrium �ows has not been widely tested.
A simpler alternative for approximating of the Reynolds stresses is to extend the strain–

stress relation of the linear eddy-viscosity model, by adding all the higher order (second or
second and third order) non-linear combinations of the strain and vorticity rate tensors that
satisfy the kinematic constraints of the turbulent stress tensor. The coe�cient of these terms
are then determined with reference to a range of basic �ows. These non-linear strain–stress
relations have the ability to produce the di�erences between the normal stresses and thus can
extend the model’s applicability, by allowing it to predict �ows in which the anisotropy of
turbulence is important, such as �ows involving turbulence-driven secondary motions. The
majority of earlier works in this direction (e.g. References [20, 21]) only retained terms up to
quadratic order in the mean velocity gradients. However, it was found that improvements in
predictions were only achieved for limited types of �ow for any one particular model. This
led Suga [22] to develop a non-linear eddy viscosity model (NLEVM) with terms up to cubic
order, in order exhibit correct sensitivity to streamline curvature. In this turbulence model, the
turbulent stresses are obtained via the constitutive relation:
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where Sij and �ij are strain and vorticity rate tensors, respectively,
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Table II. Values of coe�cients in the non-linear k–� model.

c1 c2 c3 c4 c5 c6 c7

−0.1 0.1 0.26 −10c2� 0 −5c2� 5c2�

The model coe�cients, c1–c7, have been calibrated by Craft et al. [23], by reference to
several �ows, including homogeneous shear �ows, swirling �ows and curved channel �ows.
The values of these coe�cients are given in Table II.
The k and �̃ transport equations and eddy-viscosity formulation are similar to those of

linear model, however, for modelling of c� the following expression was proposed by Craft
et al. [13]:

c�= min
[
0:09;

12
1 + 3:5�+ fRS

]
(15)

with

�= max(S̃ ; �̃) (16)

where strain and vorticity invariants are expressed as
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k
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k
�̃

√
0:5�ij�ij (17)

and

fRS =0:235[max(0; �− 3:333)]2 exp(−R̃t=400) (18)

The viscous damping of �t is provided by the function f�:

f�=1− exp
⎧⎨
⎩−
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−
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The near-wall source term E is now expressed as

E=

⎧⎪⎪⎨
⎪⎪⎩
0:0022

S̃�tk2

�̃

(
@2Ui
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)2
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0 for R̃t¿250

(20)

In this model, the length scale correction term is still required in the dissipation rate equation
to correct for over-predicted length scales in boundary layers subjected to adverse pressure
gradients and in separated �ows. However, in order to reduce the amount of correction in the
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regions of high �, Craft et al. [13] proposed that the coe�cient C! is taken as

C!=
0:83min(1; R̃t=5)

0:8 + 0:7(�′=3:33)1=2 exp(−R̃t=125)
(21)

where

�′= max
[
k
�̃
;
√
�
�

]
� (22)

The limited R̃t-dependent damping is included for numerical stability.

4. NUMERICAL ASPECTS

The calculations presented here have been obtained using the modi�ed version of the STREAM
code, an open source research code, developed at UMIST by Lien and Leschziner [24]. This
‘in-house’ research code of the UMIST group, employs a �nite-volume strategy in which a
non-orthogonal and body-�tted grid system is used and all transported properties are stored in
a fully collocated manner. Advective volume-face �uxes are approximated using a bounded
version of the upstream quadratic interpolation scheme, QUICK, described in Reference [25].
To evaluate the pressure �eld the well-known SIMPLE pressures correction algorithm has been
used. To avoid stability problems associated with pressure–velocity decoupling, the Rhie and
Chow [26] interpolation scheme is also employed. The STREAM code has been successfully
used by many researchers for computation of various complex �ows. Examples of such works
are References [24, 27–29].
The �ow through 90◦-curved ducts considered in this investigation is governed by elliptic

partial di�erential equations, and these require the prescription of boundary conditions along
the entire perimeter of the solution domain. Since the inlet boundary conditions are not avail-
able form the experimental data, a uniform �ow inlet condition is imposed at the duct entry
by setting the U -velocity equal to the bulk velocity and V and W velocities to zero. The value
of turbulent kinetic energy (k) at the inlet is set to (0:03Ub)2. The value of � is subsequently
computed from k3=2=l with l=0:1H . It should be mentioned that several computations have
been performed to examine the in�uence of k and � levels at the inlet on the �ow predic-
tions. The results of these investigations showed that �ow �eld predictions vary little with
these changes. The values of normal stresses subsequently set to 2=3k, while the shear stresses
are set to zero. These uniform �ow inlet conditions were imposed at 8H and 9H upstream of
the bend entry for the square and rectangular ducts, respectively. As mentioned in Section 2,
these upstream lengths of the computational domains were selected, because when starting
with uniform inlet conditions, the resulting predictions best matched the available data at
the �rst measured location just before the bend. At the downstream boundary, zero gradient
conditions were imposed for all variables except pressure. A uniform pressure di�erence is
imposed across the exit plane, determined from overall continuity considerations.
As shown in Figure 2(a), due to symmetry of the curved square duct, only half of the

cross-section is resolved using a body-�tted mesh. In this �gure, the origin of the coordinate
system corresponds on the centre of curvature. The mesh consists of 70 × 71 × 35 nodes in
stream-wise, cross-stream, and span-wise directions, respectively. In the stream-wise direction,
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(a) (b)

Figure 2. Computational grids with 70 × 71 × 35 nodes in stream-wise,
cross-stream, and span-wise directions.

15 nodes are located along the upstream-length, 35 nodes cover the curved section and 20
nodes are placed along the downstream-length of the duct.
A similar mesh with the same number of grid nodes was also used for the computations

in the curved duct of rectangular cross-section, see Figure 2(b). Although the aspect ratio of
the rectangular duct is much higher than that of a square duct, experimental data of Kim and
Patel [8] indicates a wide region of two-dimensional �ow along the span-wise (z) direction.
This justi�es the number of grid points used in z direction for the curved duct of rectangular
cross-section. The y+ value of the near-wall nodes was kept, in all computations, to levels of
less than unity. To assess the accuracy of the results, a series of grid independency tests have
been carried out using a medium (50× 51× 25) and the �ne (70× 71× 35) mesh. For both
geometries, the predicted velocity pro�les at two stream-wise locations, one upstream of the
curved section and one within the bend, are shown in Figures 3 and 4. It can be seen that the
predicted stream-wise velocity pro�les on the 70 × 71 × 35 mesh are practically identical to
those obtained on the 50×51×25 mesh. This indicates that for both geometries investigated,
results obtained on the 70× 71× 35 mesh can be regarded as grid-independent.
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Figure 3. Predicted stream-wise velocity component for �ow through square 90◦ bend
using linear k–� model. Open squares: data [7]; dashed curve: medium (50 × 51 × 25)

grid; solid curve: �ne (70× 71× 35) grid.

5. RESULTS AND DISCUSSION

5.1. Curved duct of square cross-section

The computed velocity vectors, obtained with the non-linear k–� model, at the vertical mid-
plane of the duct are shown in Figure 5. An enlargement of the bend region is also included,
to highlight the more interesting features of the �ow development. The linear low-Re k–�
model velocity vectors were similar and thus are not shown here. As can be observed, �uid
enters uniformly and as a result of �ow development the boundary layer thickness grows along
the straight duct. Within the bend, the �uid accelerates along the convex (suction) surface
up to �=45◦ and then starts to decelerate. It is observed that the opposite occurs along the
concave (pressure) surface. The initial �ow acceleration and deceleration along the convex
and concave surfaces of the bend, respectively, stem from the pressure gradients that develop
at the bend entry. Due to the action of the centrifugal force, along the convex (inner) side
the pressure drops at the bend entry, while along the concave (outer) side the pressure rises.
Consequently, a favourable pressure gradient is generated along the inner side and an adverse
one along the outer side, at the bend entry. The convective e�ects of the secondary motion that
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Figure 4. Predicted stream-wise velocity component for �ow through rectangular 90◦
bend using linear k–� model. Open squares: data [8]; dashed curve: medium (50×51×25)

grid; solid curve: �ne (70× 71× 35) grid.

Figure 5. Predicted �ow �eld in middle plane of the square 90◦ bend using the non-linear k–� model.
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develops within the bend and also the stream-wise pressure gradients at the bend exit, which
have the opposite sign to those at the entry, account for the subsequent deceleration along the
convex surface and the corresponding acceleration along the concave surface. After the curved
section of the duct, �uid velocity gradually decreases along the outer surface and increases
along the inner surface of the straight duct, until it reaches to the fully developed condition.
It is also worth noting that towards the bend exit, a strong span-wise gradient in the mean
velocity develops in the duct core. This suggests strong three-dimensionalities in the �ow.
Figure 6 shows the predicted stream-wise velocity contours (U=Ub) and secondary �ow

vectors, at three cross-sectional planes, using the linear and non-linear k–� models. It can
be seen that just before the bend entry, at X=H = − 0:25, due to the e�ects of the entry-
plane streamwise pressure gradients, the core �uid is displaced towards the convex surface.
Within the bend, the duct curvature induces two pairs of counter-rotating secondary vortices
across the duct, as seen at �=60◦ and Y=H =0:25. The pair of larger vortices is the classical
curvature induced secondary �ow pattern, which transfers �uid from the concave surface to
the convex surface along the side walls and then returns it to the concave surface through
the centre of the duct. The pair of smaller counter-rotating vortices is close to the concave
surface, and their presence, which has been reported in earlier studies of curved duct �ows,
such as Reference [2], is due to the instability of the boundary layer along the concave wall.
It is evident from the shape of the streamwise velocity contours, that the secondary motion
signi�cantly alters the distribution of stream-wise velocity across the duct. The smaller vortices
bring the low momentum �uid from the side walls to the symmetry plane in the vicinity
of the concave surface. This accounts for the strong span-wise gradient in mean velocity
observed in Figure 5. It can be seen that the di�erences between the two sets of computations
are insigni�cant. Both turbulence models produce more or less similar stream-wise velocity
contours and secondary velocity cells.
A major, but interesting, di�erence between the present results with those reported by

Iacovides et al. [12] for an identical geometry is that in the earlier study only one pair of
counter-rotating secondary motions was predicted across the duct cross-section using a zonal
k–� model, while the present models produce two. There are two possible reasons for these
predictive di�erences. First, the use of the zonal model, by Iacovides et al. [12], with a �xed
turbulent length-scale across the near-wall regions may be inappropriate in regions of strong
stream-wise pressure gradient, such as the bend entry and exit regions. Second, the Iacovides
et al. [12] study employed a semi-elliptic �ow solver, which involved a marching solution for
all �ow variables except for pressure and also the use of upwind di�erencing in the stream-
wise direction. In contrast to that earlier study, here the calculation are fully elliptic and the
QUICK scheme, all be in a bounded form, is used in all directions and for all variables. One
would thus expect the present computations of the secondary �ow to be more realistic.
Comparisons between the computed and measured stream-wise velocity component across

three stream-wise planes are presented in Figure 7. Upstream of the bend at X=H =−0:25,
it is seen that the �ow is still developing and, consistent with secondary �ow shown in
Figure 6, the core �uid is somewhat displaced towards the convex surface. At this location,
both turbulence models return similar pro�les which are also close to the experimental data.
Within the curved duct at �=60◦, both models correctly predict the stream-wise velocity in
the core region, though close to the side wall the non-linear k–� model performs slightly
better. Downstream of the curved section at Y=H =0:25, it is seen that, due to the secondary
�ow, low-momentum �uid is accumulated near the convex surface (Yw=H =0:7). At this

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1379–1405



1392 M. RAISEE, H. ALEMI AND H. IACOVIDES

Figure 6. The predicted stream-wise velocity contours and secondary �ow vectors using
the linear and non-linear k–� models.
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Figure 7. Comparisons between predicted and measured stream-wise velocity component
for �ow through square 90◦ bend. Open squares: data [7]; dashed curve: linear k–�

model; solid curve: non-linear k–� model.
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location (Y=H =0:25), both the linear and non-linear models return the correct behaviour close
to the concave wall (Yw=H =0:3), but some discrepancies are observed between predictions
and measurements along the symmetry line close to the convex surface (Yw=H =0:7) and the
plane halfway between the concave and convex walls (Yw=H =0:5). Both turbulence models
under-predict the measured values of the stream-wise velocity at Yw=H =0:5. At Yw=H =0:7
the stream-wise velocity is under-predicted near the side wall, while it is over-predicted in the
core of the duct. This suggests that the strength of the secondary motion is under-predicted.
The corresponding comparisons for the cross-stream velocity component are presented in

Figure 8. Upstream of the curved section at X=H =−0:25, the experiments show that the
cross-stream velocity is small but directed towards the convex surface, a feature consistent
with the secondary �ow at X=H =−0:25 shown in Figure 6, and the presence of a cross-stream
pressure gradient upstream of the bend. It is observed that both turbulence models correctly
return a small uniform and positive cross-stream velocity. Within the bend at �=60◦, the
measurements reveal that the �uid near the symmetry plane moves away from the convex
surface while the �uid near the side wall moves towards it, forming in a large pressure-driven
secondary �ow which is already shown in Figure 6. It is observed that both turbulence mod-
els correctly reproduce the variation as well as the levels of the cross-stream velocity at this
location. Downstream of the curved section at Y=H =0:25, the levels of cross-stream velocities
are still high, though they are somewhat lower than those at �=60◦, showing that the decay
of secondary motion outside the curved section has started. Both turbulence models produce
fairly good results. It is seen that the most serious discrepancies between predictions and
measurements occur along the concave surface (Yw=H =0:3). There, the cross-stream veloci-
ties are over-predicted close the symmetry plane, while they are under-predicted in a region
halfway between the symmetry plane and the side wall.
In Figure 9, the predicted and measured pressure coe�cients along three parallel lines

within the symmetry plane (Z=Z1=2 = 0) of the duct are presented as Cp(�). The large cross-
stream pressure gradient at the inlet plane (�=0◦) con�rms the in�uence of the bend on
the upstream �ow as also noted earlier in Figures 5 and 8. It can be seen that initially an
adverse pressure gradient develops close to the concave surface and a favourable gradient near
the convex surface, causing the observed deceleration and acceleration of the �uid near the
respective surfaces in Figure 5. It is clear that these trends are reversed after around �=60◦,
where the largest pressure gradient and consequently the strongest secondary motion occurs.
Comparisons indicate that both turbulence models are able to reproduce the levels as well as
the distributions of the measured pressure coe�cients within the curved section of the curved
duct with a square cross-section.

5.2. Curved duct of rectangular cross-section

Having discussed �ow predictions of the curved duct with a square cross-section, attention is
now directed to the performance of turbulence models in predicting �ow characteristics through
the curved duct with rectangular cross-section. For this test case, the predicted velocity vectors,
obtained with the non-linear k–� model, at the vertical mid-plane of the duct are shown in
Figure 10. The main �ow features are very similar to those observed in Figure 5 for the
square curved duct. A major di�erence, however, between the predicted �ow �eld in the
rectangular case and that of the previous one, is that the �ow in the symmetry plane of
the duct is now more uniform both within and outside the curved section. This feature can
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Figure 8. Comparisons between predicted and measured cross-wise velocity component for �ow through
a 90◦ bend of square cross-section. Legend as in Figure 7.
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Figure 9. Local pressure coe�cient comparisons for �ow through a 90◦ bend of square
cross-section. Legend as in Figure 7.

be explained by the predicted cross-duct velocity vectors and stream-wise velocity contours
shown in Figure 11. As can be seen, the secondary motion close to the symmetry plane of
the duct is now weaker, producing more uniform stream-wise velocity contours. Note that
both turbulence models produce very similar secondary motions and stream-wise velocity
contours. The only notable di�erences emerge near the corner regions after the bend exit,
where the non-linear model returns a smaller corner vortex. This feature is consistent with
comparisons shown in Figure 12. As can be seen at all locations both turbulence models
produce practically identical stream-wise velocity pro�les, which are also in close agreement
with the experimental measurements. At the plane half a diameter before the bend, the e�ects
of the bend on the �ow are fairly minor. Half-way through the bend, the faster �uid is still
displaced towards the inner side, suggesting that the e�ects of the entry pressure gradients
still persist, while after the bend, due mainly to the exit pressure gradients, the faster �uid
is displaced to the outer side. The most noticeable, all be it still minor, discrepancy between
predictions and measurements occurs downstream of the curved section at Y=H =0:5, close to
the side wall (Z=H =2:5), where the secondary motion is strongest.
In Figure 13, the predicted turbulent kinetic energy pro�les are compared with the cor-

responding data of Kim and Patel [8]. At X=H =−0:5, upstream of the tangent, the results
obtained with both models are much alike and are also in reasonable agreement with the data
everywhere, except at the walls, where the measured data are under-predicted.
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Figure 10. The predicted �ow �eld in middle plane of the 90◦ bend of rectangular
cross-section using the non-linear k–� model.

Figure 11. Predicted stream-wise velocity contours and secondary �ow vectors for the 90◦ bend of
rectangular cross-section, using the linear and non-linear k–� models.
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Figure 12. Comparisons between predicted and measured stream-wise velocity component for �ow
through a 90◦ bend of rectangular cross-section. Open squares: data [8]; dashed curve: linear k–�

model; solid curve: non-linear k–� model.
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Figure 13. Comparisons between predicted and measured turbulent kinetic energy for �ow through 90◦
bend of rectangular cross-section. Legend as in Figure 12.
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Within the curved section at �=45◦, it is seen that the measured turbulence energy pro�les
are no longer symmetric. Along the outer wall the peak k levels are higher and also the layer
of high k levels is thicker than along the inner wall. This behaviour is caused by the fact
that the boundary layer over a concave surface is unstable and hence more turbulent, while
over a convex surface it is stable. The linear k–� model under-predicts the peak turbulence
energy and also returns a more symmetric distribution. The non-linear model, on the other
hand, reproduces the measured behaviour at all span-wise locations. This is due to the fact
that direct e�ects of streamline curvature on turbulence cannot be reproduced with models
that return isotropic turbulence, such as the EVM model. Downstream of the curved section
at Y=H =0:5, the variations of the measured turbulent kinetic energy pro�les are also better
reproduced by the non-linear k–� model, though some discrepancies between predictions and
experimental data are now present.
Considering the comparisons for turbulent shear stress pro�les in Figure 14, at the �rst

station upstream of the bend (i.e. X=H =−0:5) both turbulence models reproduce the shape
and level of the measured pro�les. Only very close to the walls the peak values of uv are
under-predicted by the models. At �=45◦, as was also the case with the k comparisons
of Figure 13, the non-linear k–� model clearly performs much better than the linear model.
As can be seen, the turbulent shear stress, like the turbulent kinetic energy, reaches higher
peaks next to the outer surface of the duct. While the linear k–� model again fails to reproduce
this feature, the non-linear model successfully predicts the peak shear stresses. After the curved
section at Y=H =0:5, it is seen that the non-linear k–� model generally is more e�ective in
reproducing the experimental data. Note, however, that at the same location close to the side
wall at Z=H =2:5, the results of the linear k–� model in a region adjacent to the inner surface
of the duct are much closer to the measured data which is also consistent with the predicted
turbulent kinetic energy in this location, shown in Figure 13. The experimental study of
Taylor et al. [7] for the 90◦ bend of square cross-section did not provide measurement of
the turbulence �eld. Hence, it is uncertain whether use of the non-linear k–� model would
have resulted in similar improvement in the prediction of the turbulence �eld for 90◦ bends
of square cross-section.
Figure 15 demonstrates comparisons between friction coe�cient pro�les returned by the

turbulence models and experimental data along three di�erent stations on the concave sur-
face. At the �rst station (i.e. X=H =−0:5) the predictions of both models are close to that
data, but at the second and third stations the non-linear model predictions are clearly
superior. This is not surprising because, as shown in Figures 13 and 14, the non-linear
k–� model also reproduces the turbulence �eld along the concave surface of the duct more
reliably.
Concerning the pressure coe�cient predictions in Figure 16, the data show that there is no

cross-duct pressure variation before the bend, the centrifugal forces set up a strong cross-duct
pressure gradient within the bend, which immediately disappears after the bend exit. Both the
linear and non-linear k–� models are able to reproduce the overall variation of the pressure
coe�cient within the curved section as well as the straight sections of the duct. A close
examination of this �gure shows that, crucially, the overall pressure drop due to the presence
of the bend is more accurately predicted by the non-linear k–�.
Finally, it should be noted that according to the experimental works the maximum exper-

imental error in the measurements was around 5%, which is not expected to have a serious
impact on any of the conclusions reached.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1379–1405



PREDICTION OF DEVELOPING TURBULENT FLOW 1401

Figure 14. Comparisons between predicted and measured turbulent shear stress for �ow through 90◦
bend of rectangular cross-section. Legend as in Figure 12.
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Figure 15. Local friction coe�cient comparisons for �ow through a 90◦ bend of rectangular
cross-section. Legend as in Figure 12.

Figure 16. Pressure coe�cient comparisons for �ow through a 90◦ bend of rectangular
cross-section. Legend as in Figure 12.

6. CONCLUSIONS

This study has considered the application of low-Re linear and non-linear eddy-viscosity
models to the numerical prediction of the velocity and pressure �elds in �ow through two
90◦-curved ducts, one of a square cross-section and one of a rectangular cross-section. The
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computations have shown how the curvature of a 90◦ bend in�uences the �ow �eld charac-
teristics of developing turbulent �ow. It was shown that for the bend of square cross-section
the curvature induces a strong secondary motion, while for the rectangular cross-section the
secondary motion is con�ned to the corner regions. The curvature also in�uences the �ow
development along the straight upstream section of the duct by inducing a weak cross-duct
motion near the entrance of the curved section. Curvature causes the pressure gradient to
change sign along the convex and concave walls of the curved section, which results in
local redistribution of the stream-wise velocity pro�le along the curved section. The e�ects
of curvature are also present downstream of the curved section, though slowly diminishing
with the development of the main stream. In the case of bend of square cross-section an
extra pair of vortices appears along the convex surface near the bend exit which results in
strong span-wise gradient of the stream-wise velocity in the duct core. These features are
not present in the bend of rectangular cross-section. Comparisons of the numerical predictions
with the measured data for the mean velocities and pressure variation indicate that in the bend
of square cross-section both turbulence models can produce reasonable predictions. For the
bend of rectangular cross-section where a wider range of data is available, while both mod-
els produce satisfactory predictions of the mean �ow �eld, the non-linear k–� model returns
superior predictions of the turbulence �eld and also of the pressure and friction coe�cients.
The main, though it has to be emphasized still minor, predictive weakness of the non-linear
k–� is in the prediction of the �ow recovery after the bend exit. To address this weakness,
would probably require the use of full second-moment closures that account for transport
e�ects on the turbulent stresses.

NOMENCLATURE

Cp pressure coe�cient ≡ [(P − Pref )=0:5�U 2
b ]

Dh hydraulic diameter of duct
H duct height
k turbulent kinetic energy
P �uid pressure
Pref reference value of pressure
Pk generation rate of turbulent kinetic energy
Re Reynolds number ≡ [UbH=�]
Rc mean radius of curvature
U mean velocity in stream-wise direction
u velocity �uctuation in stream-wise direction
Ub bulk velocity
Uc centreline velocity
Ui mean velocity vector in tensor notation ≡ [U;V;W ]
ui �uctuating velocity vector in tensor notation ≡ [u; v; w]
uiuj Reynolds stress tensor
V mean velocity in cross-stream direction
v velocity �uctuation in cross-stream direction
W mean velocity in span-wise direction
w velocity �uctuation in span-wise direction
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X; Y; Z Cartesian coordinates
xi Cartesian coordinates ≡ [X; Y; Z]
Yw distance from the concave wall
Z1=2 duct half-width ≡ [H=2]
�ij Kronecker delta
� dissipation rate of turbulent kinetic energy
�̃ isotropic dissipation rate
� stream-wise coordinate direction
� �uid dynamic viscosity
� �uid kinematic viscosity
� �uid density
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